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Abstract. Characteristic monomials for a finite group are
obtained by direct subductions of Q-conjugate repre-
sentations. They are shown to give a generating function
that is capable of solving enumeration problems.
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1 Introduction

Major problems of chemical group theory are concerned
with electronic and vibrational spectra, symmetry prop-
erties of molecular orbitals, stereochemical properties of
molecules, etc. They have been treated mainly by means
of approaches based on linear representations and
irreducible representations [1]. Such types of approach
have been the central topics of most textbooks on
chemical group theory [2-10].

On the other hand, an alternative type of approach
based on permutation representations and coset repre-
sentations [11-14] has been applied to such problems as
combinatorial enumeration of isomers [15-23].

Throughout a series of papers [24-28], we have been
aiming at integrating both types of approach so as to
obtain a broader prospect of chemical symmetry. As a
result, the first type of approach has been extended to be
capable of being applied to enumeration problems of no
original territory. Thus, we have reported a method of
combinatorial enumeration based on characteristic mo-
nomial tables, where the subduction of Q-conjugacy
representations has been a key concept for deriving such
characteristic monomial tables from Q-conjugacy char-
acter tables [26-28]. Although the subduction process
reported gives a full set of mathematical derivations [28],
it is so indirect that (1) each Q-conjugacy character of G
is converted into a linear combination of dominant
markaracters [G(/G;)] and (2) each dominant mar-
karacter is in turn subducted into respective cyclic sub-

groups G; to give a linear combination of the
markaracters of G;. In particular, it is a disadvantage for
the indirect subduction to involve rather tedious calcu-
lations, because the coefficients in the linear combination
of step (1) are rational numbers.

The subduction of Q-conjugacy representations can
be performed directly if each Q-conjugacy character of
G is subducted into a cyclic subgroup G; to give a linear
combination of the markaracters of G;. The present
paper deals with direct subductions, which are as useful
as, but simpler than indirect subductions for deriving
characteristic monomials.

2 Direct subductions versus indirect subductions
2.1 Indirect subductions

As shown in the next subsection, direct subductions are
derived by omitting intermediate steps of the indirect
subductions reported in a previous paper [28]. In order
to show the intermediate steps omitted, the indirect
subductions are formulated with matrix expressions in
place of the previous expressions by linear equations
[28]. Suppose a_finite group G has a Q-conjugacy
representation ®, with a Q-conjugacy character 0,
which appears as a row vector in a Q-conjugacy
character table of G:

1G1 |Gy 1 G | G
0, (:)1 911 le - Qlj le
0, ®, | 0y On - 0y - Oy
DG _ A _ ,\: A. A. . ,\ A.
0, o, 01 0n - 0y - O
95 @s 551 652 e 55/’ e /(335

(1)
Since such a Q-conjugacy representation @g is a matured

representation, its character 0, is expressed by a linear
combination of dominant markaracters:



0 =3 2G(/G) )
i=1

for £=1,2,...,s, where each coefficient oy, is a rational
number. For simplicity, the symbol G(/G;) is used for
denoting dominant representations as well as the
corresponding dominant markaracters. When the coeffi-
cients are collected to give a row vector called a
mutliplicity vector,

o = (01, %2, Olts) (3)
for¢ =1,2,...,s, the coeflicients are obtained by solving
linear equations or equivalently by calculating a matrix
equation,

@M_]G =ay (4)

.o~ .
for £=1,2,...,s, where the matrix M appearing in
the left-hand side is the inverse of a markaracter table of
G, ie.,

1G] Gy 1 G; 1 Gs
G(/Gy) ( mu
G(/Gy) | ma  mxp
Me = : : : .
G(/G)) m;| Mp 0 My
G(/Gs) Mg msp o Mg Tt Mg
(5)
Equation 4 is transformed into
/H\g = OthG (6)

for¢=1,2,...,s, which is formally related to Eq. (2) by
regarding each row of M¢ as a row vector denoted by
the symbol G(/G;). The method reported in the previous
paper [28] is based on Eq. (4) or Eq. (6), in which such
coeflicients of rational numbers are calculated.

By collecting the multiplicity vectors (Eq. 3), we
construct an s x s multiplicity matrix 4 as follows:

G(/G1) G(/Gy) G(/G)) G(/Gy)
x o %12 o %s
5] 0] 022 e o0 B 025
4= =
o1 (%] T Olvi cee Olgs
os Os] 0s2 o Olsi o Olss
(7)
Thereby, Eq. (6) is transformed into a matrix expression,
D¢ =AMy . (8)
The subduction of each dominant representation

G(/Gy) | G; gives a linear combination of the dominant
representations of G;.

G(/G) | G; = Zﬂik G,(/GY) 9)
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The coefficients f,(j) (k=1,2,...,
combination are calculated by

r) of the linear

MGlGjﬂilGj = BGj (10)
The symbol MGLG/ in the left-hand side of Eq. (10)
represents an s x » subducted matrix, in which the
columns corresponding to the subgroups of G; are
collected from Mg, i.e.,

16 16Y LGy LGY
G(/G1) L G; [ mf]
G(/G) LGy | mf)  m3)
MGlG/:G(/Gk)lG/ ml omp o m)
G/G) LG | mi  my - oml o m)
GU/G)LG \ mf)  ml o m
(11)

and the symbol M(; represents the inverse matrix of the
dominant markaracter table of the subgroup G;. The
symbol Bg, in the right-hand side of Eq. (10) represents
an s xr multiplicity matrix,

G,(/GY)  G;(/GY) G,(/GY) G,(/GY)

p A

() () o () o ()

21 22 2k 2r

Bg, = - - ’ - .
A A

A gy g s

(12)

For convenience, we use a row vector /32" ) selected from
the matrix Bg,, i.€.,

B = B BE - ) (13)
for £ =1,2,...,s. Both sides of Eq. (10) are multiplied
by the multiplicity matrix 4 to give
AM¢ 6, Mg = 4Bg, = X, (14)

where the symbol Xg, represents an s x » multiplicity
matrix,

Gi(/GY)  G;(/GY) G,(/GY) G,(/GY)
Xzi 72/2 e Xzic T XZ/r
Xg, = g’ ] - - 3
/%) 12/2) . X%() . Xg)
1 TR
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2.2 Direct subductions

In Sect 2.1 we calculated the multiplicity matrix 4, which
we introduced into Eq. (14) to obtain Xg,. However, the
following discussion will show that calculation of A4 is
unnecessary for_obtaining X .

Compare AMg|g, in the left-hand side of Eq. (14)
with AM¢ in the right-hand side of Eq. (8). Since the
former can be derived from the latter by subduction,
Eq. (8) gives

Dg g, = AMgg, (16)

where Dg|g, in the left-hand side is generated from Dg
(Eq. 1) by collectlng the columns related to the
subgroups of G, i.e.,

1GY | GY | GY 1 GY
N ~(j) ~(/) ~(/) ~(/)
OLG by g o By Dy
~ —~ ~( —~ —~
0] Gj 921 '922 sz 92r

Dgie, = _ i Ny A:- iy
616G | 0y 0y 0y )
~ ~(j) () () ~()
0| Gj Hsl 952 T gsk T gsr

(17)
By introducing Eq. (16) into Eq. (14), we obtain

DGl(;jj\ZilGj ZXG]. . (18)

The matrix expression (Eq. 18) does not contain the
intermediate matrix 4 [eq. (7)]. This fact is the basis of
naming the method “direct subduction”. The disscussion
is summarized into a theorem, in which the matrix
expression is transformed into another formulation
using row vectors.

Theorem 1: The multiplicity vectors represented by

1 =l i) (19)
are obtained by
001 G)M "6, = 7 (20)

fort=1,2,...,s. The symbol @ | G,] represents the row
vector obtained by the subduction (Dgg,)-

This theorem gives a direct method of subduction of
Q-conjugacy representations with characters 6, into a
cyclic subgroup G;.

Each element of the multiplicity vector [y%g in Eq.
(19)] represents the multiplicity of the coset represen-

tation Gj(/G,&/)), the degree of which is equal to

di = |G;|/ |G,({J)|. This value represents the size of the
corresponding orbit, to which a dummy variable sg, is
assigned. Thereby, we define a characteristic monomial
as follows by using the multiplicity vector (Eq. 19).

Z(0; | Gy;sa,) Hs:,j,f (21)

Example I: Let us examine the point group T, which has
a Q-conjugacy character table:

1C |G |G
4( 1 1 1
Dr=fg| 2 2 ] (22)
T\ 3 —1 0

The monomials for the column | C, are obtained by
direct subduction. We select the | C; and | C, columns
from the Q-conjugacy character table of T to form a
3 x 2 matrix. This matrix is multiplied by the inverse
(M~!¢,) of the markaracter table of C,.

11 M ¢,
2 2 (% 0)
3 1)\ -1 1
Cz(/cl) Cz(/Cz) l C2 (23)
A 0 1 5
) 0 2 s%
T 2 -1 s’lsg

The resulting 3 x 2 matrix contains the multiplicities of
dominant markaracters of C:

4] C=G(/C)
E | C, =2Cy(/Cy)
T J, C = 2C2(/C1) =+ C2(/C2)

Since the sizes of orbits are calculated to be
|C2]/|Ci| = 2 and |C;|/|C,| = 1, we obtain characteristic
monomials, as shown after dotted lines in Eq. (23).

The monomlals for the column l C; are also obtained

by direct subduction. We use the inverse (M I¢c,) of the
markaracter table of Cs.
11 M'¢,
)
0 1
C;(/C C;i(/C
3(/C1)  C3(/Cs) 1 Cs (24)
A 0 1 5
=E 1 —1 515y
T 1 0 5

The monomials for | C; are obtained directly from the
first column of Dy (Eq. 22) to be sy, s?, and s3, the
powers of which appear in the first column. All the
monomials obtained above are collected to give a
characteristic nomomial table for T (Table 1). O

Example 2: Let us examine the point group Dy, which
has a Q-conjugacy character table:

1C 1C |C |G |Sy
4, [ 1 1 1 1 1
A 1 1 -1 -1 1
Do, =pB, | 1 1 1 -1 -1 (25)
B, | 1 1 -1 1 -1
E\N2 -2 0 0 0



Table 1. Characteristic monomials for T

T 1 C 1 G 1 G
A S1 N N
E si sil , sl’ls_;
T 55 s785 $3

The monomials for the column | S; are obtained by
direct subduction. We select | C;, | C; and | Sy and
columns from the Q-conjugacy character table of Dy, to
form a 5 x 3 matrix. This matrix is multiplied by the
inverse (M~ Is,) of the markaracter table of Sy.

1 ~

11 »
11 M,
10 0
R N R A
-1 1 9
T o 1
2 -2 0 2
S4(/C1)  Sa(/Cr) S4(/S4) 1S
4 0 0 1 s
A, 0 0 1 N
= B 0 1 -l sTlsy
Bz 0 1 -1 Sl—ls2
E 1 -1 0 sl

(26)

We obtain characteristic monomials, as shown after
dotted lines in Eq. (26).

The monomials for cyclic subgroups are directly ob-
tained in a similar way. All the monomials are collected
to give a characteristic monomial table for Dy, (Table 2).

3 Combinatorial enumeration
with obligatory minimum valency

We proposed the combinatorial enumeration of isomers
under the influence of obligatory minimum valency
(OMV) [29, 30]. This enumeration is formulated to
assign a distinct ligand inventory to each orbit governed
by a coset representation. This formulation is able to be
combined with the characteristic monomials defined in
the present paper.

Suppose that a skeleton has a set of positions placed
under the action of the group G, which gives a permu-
tation representation P. The permutation representation
is subdivied into a set of coset representations:

Table 2. Characteristic monomials for Dy

/
Dy, 1 C 1 G 1 G 1 G 1S4
Ay S1 K S1 K S
-1 1
Ar S1 S1 s7 82 S 82 S1
B K S K ST s, 5 lg,
B, S S1 sl’lsz S1 Sl’lsz
E S% sl’zs% K SH 55 Usy

. 1 1 1 1 1
]v] 8 8 4 4 4

407

i=1

Each coset representation G(/G;) corresponds to an
orbit A, with |G|/|G;| positions, where o = 1,2,...,
andi = 1,2,...,t¢. Note that ¢ represents the number of a
nonredundant set of subgroups. This value is in general
unequal to the value (s) concerning cyclic subgroups
only. The multiplicities a; can be calculated in the light
of Theorem 1 or Ref. [30]. Each coset representation (as
a matrix form) appearing in Eq. (27) is reduced into a set
of Q-conjugacy representations as follows:

=Y 4de, (28)
(=1

To treat OMVs, we assign a distinct ligand 1nvent0r to
each orbit A, where we give a dummy variable Sd to
the orbit A, governed by G(/G;). Thereby, Eq. (21) is
transformed into

L)

2(0r L Gyisy) = TGy (29)

The collection of characteristic monomials labeled with
(i) (Eq. 29) in accord with Eq. (28) generates the
following monomial

i g ~ io a('i)
2(G(/G)) | Gyisf?) =[] (200 1 G5 )"
/=1
(i)

SIICREY

k=1

S CRE (30)

where we place

=3 a4, (31)
=1

The monomial (Eq. 30) is concerned with the orbit A,
governed by G(/G;). Since the orbit takes the same
inventory, the two products appearing in Eq. (30) are
allowed to be exchanged. As a result, the product
concerning (s) is converted into the sum in the power of
the dummy variable, as shown in Eq. (31). When i runs
from 1 to ¢, the product of the monomials (Eq. 30) gives
the definition of a subducted cycle index (SCI) concern-
ing the subduction into G;:

SCI(G | G HHZ (/G) L Gisy)
i=1 a=0
t o s N ) aEi)
=TI (7@ 1 6si)
i=1 a=0 (=1
I CRE (32)
i=1 a=0k=1
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where we place s< 0 — 1 for o = 0 for remedying the case
ofa; =0.Ina s1m11ar way to Def. 4 of Ref. [30], we have
the definition of a cycle index (CI) by starting from Eq.
(32)

1(G; sd’f ZN (HHZ

i=1 0=0

_Z::N (f[ i H ) ) (33)

i=1 a=0 k=1

where we place

(G
Ny = Z ~ Not@l (34

in the light of Eq. (54) of Ref. [24]. The cycle index (Eq.
33) based on characteristic monomials is easily shown to
be equal to the counterpart based on unit subduced cycle
indices (USClIs) [30]. Hence, Theorem 4 of Ref. [30] is
restated in terms of the present formulation.

Theorem 2: Suppose n,, of ligands X, (y = 1,2,...,v) are
selected from a set of [yzgands /

X ={X,X,.... %} , (35)
where we have a partition:

ml=m+m+--+n=n. (36)

They are placed on n of the positions in a skeleton to give
isomers with the weight

W, — HHHMV, (37)

i=1 a=0 v

where the weight wy,(X,) is assigned to each orbit (A,); the
symbol v in the last product is effective if X, is placed on
the orbit Ay; and wiy(X,) = 1. A generating function for
the total number A, of isomers with the weight W, is

represented by

> Ay Wy = Cl(GisyY) (38)
n

into which the inventories,
v
(i) d;
Sap = ZWiM(X"/) . (39)
y=1

are introduced.

In a special case in which the weight w;,(X;,) is con-
stant over all the ligands, we can place w;,(X,) = X,. This
means that the weight W, [Eq. (37)] can be regarded as
the molecular formula of an isomer. Hence, we obtain a
corollary.

Corollary 1: Suppose n,, of ligands X, (y =1,2,...,0v) are
selected from a set of) ligands represented by Eq (39),
where we have a partition represented by Eq. (36). They
are placed on n of the positions in a skeleton to give
isomers with the weight (molecular formula)

w=[1x" (40)
7=l

A generating function for the total number A, of isomers
with the weight W, is represented by

> Ay Wy = CI(G; sy, (41)

n

where

= S @
=1

This corollary is equivalent to Polya’s theorem,
though its definition of CI is different from that of
Poélya’s theorem.

Example 3: Let us consider adamantane-2,6-dione as a
skeleton, where the carbon atom of each position is
replaced by a carbon, a nitrogen, or an oxygen atom.
This example has once been discussed with a different
method using USCIs in Chap. 15 of Ref. [21]. Obviously,
the two carbonyl carbons can be ommitted from our
consideration, since they cannot be replaced by N or O.
Hence, we take acount of the four bridge positions (the
orbit AY) to be replaced by C, N or O and the four
brldgehedd pos1t10ns (the orbit A® ) to be replaced by C

N. The orbit AW %overned by the coset represen-
tdtlon Dy, (/C5), while A is governed by Dyy(/Cy). The
coset representatlon Dy (/C5) has a fixed-point vector:
FPV = (4,0,2,0,0,0). This row vector is multiplied by
the inverse matrix of Dp,, (Eq. 25) to give

A4, A, B, By E

vefbob

T T
(4’0’270’070)XLC'2 T L A
LGl s -1 -3 4 0

Ise\d b ko
=(1,0,1,0,1) .

(43)

The row vector in the right-hand side indicates 4| + B
+ E. Thus, the coset representations are reduced into
Q-conjugacy representations as follows:

Dy (/Cy) =41+ B +E
Doy(/Cs) =41+ B+ E

These results are apparently equal to the ones obtained
for irreducible representaions [31], since the group Dy,
is matured. However, the symbols 4; etc. used in the
present paper represent Q-conjugacy representations,
while the counterparts used in Ref. [31] express irreduc-
ible representations.

From the characteristic monomials collected in Table
2, we obtain SCIs for each orbit by using Eq. (32):
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orbit reduction 1 Ci 1 G 1 G 1 G 1Sy
A(a) ng(/C’z) = A +B +E S? S% S%SQ S% S4
A® D2y(/Cs) = A1 + B +E st 3 53 s352 54
N 1 1 1 1 1
J 8 8 1 1 1

These SCIs are equal to the USCIs obtained with a
different method [32]. For relevant results using USClIs,
see Chap. 15 of Ref. [21].

Thereby, the CI (Eq. 33) for the present enumeration
is obtained to be

S = CI(D2a; 54,)
= 4sH O (sH® + D)D) 4 LsTsn) @ (s3)”)
+ 35 (s352)® + 454)  (5) @ (44)

where the superscripts (@) and (b) designate correspon-
dence to the orbits A and A®.

The ligand inventories [Eq. (39)] for this case are
obtained as follows.

s =cl+ N+ 0" for AW (45)
s) =+ N for A®) (46)

The former inventory is free from the restriction due to
the OMV (=2) of the bridge positions, since the
valencies of C, N and O are equal to or greater than 2.
On the other hand, the latter inventory indicates the
restriction due to the OMV (=3) of the bridgehead
positions. They are introduced into Eq. (44) of Theorem
3 and expanded to give a generating function:

r=c

+2C'N+C70

+ 6CON? + 4C°NO + 2C°0?

+10C3N? + 12C°N?0 + 6C3NO* + C30°

+ 13C*N* + 19C*N30 + 15C*N?0? + 3C*NO*

+ cto?

+ 10C3N° 4 19C3N*0 + 18C° N 0* + 6C*N?O°

+ C*NO*

+ 6C?N® + 12C*N30 + 15C°N*O? + 6C*N30°

+2C*N?0*

+2CN” + 4CN°0 + 6CN°0* + 3CN*O* + CN?0*

+ N8+ N7O0+2N%0? + N° O + N*O* (47)
where the coefficient of the term C'N™0" is the number
of isomers with the formula C/N,,O,.

To illustrate this enumeration six diaza derivatives
that correspond to the coefficient of the term C®N? in
Eq. (47) are shown in Fig. 7. These derivatives are free
from the restriction due to the OMYV. It should be noted

that the present enumeration regarded a pair of en-
antiomers as one isomer, if the isomer is chiral. Hence,

Fig. 1 illustrates an arbitrary enantiomer selected from
each pair of enantiomers.

On the other hand, the coefficient of the term C°0?
indicates the existence of two dioxa derivatives, as il-
lustrated in Fig. 2. This case shows the OMV restric-
tion, where O is incapable of substituting for the
bridgehead positions of the skeleton. This result stems
from the use of the ligand inventory represented by
eq. (46).

In additon, Fig. 3 shows an intermediate case con-
cerning the term C®NO. Note that C and N are free from
OMV while O is incapable of substituting for any
bridgehead positions. Hence, the number of resulting

0
N 4
o N
N N
/O /O
N
N
V7
0?7 0
N N o)
0 N 7
0 N 0

Fig. 1. Diaza derivatives. For a chiral isomer, an arbitrary
enantiomer is depicted

(0]

o

Fig. 2. Dioxa derivatives. For a chiral isomer, an arbitrary
enantiomer is depicted
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o

O 0/

Fig. 3. Azoxa derivatives. For a chiral isomer, an arbitrary
enantiomer is depicted

azoxa derivatives is four, which appears as the coefficent
of the term C°NO in Eq. (47).

Figures 1-3 correspond to the third row of Eq. (47).
Since each row of Eq. (47) contains terms having the
same power on C, the coefficients of these terms indicate
the effects of OMYV restriction. The present enumera-
tion agrees with the previously itemized enumeration
[21].

4 Conclusion

Characteristic monomials for a group G are obtained by
direct subductions of Q-conjugate representations:

1. The restriction of a Q-conjugacy character table of the
group G into subgroup G; to give Dg|g,

2. The multiplication of D¢ g, by the inverse of the
dominant markaracter table of G, to give a multi-
plicity matrix Xg,

3. The construction of a characteristic monomial on the
basis of the multiplicities appearing as a row of the
matirix Xg,.

The resulting characteristic monomials are shown to give
a generating function that is capable of solving enumer-
ation problems.
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